Toggle menu
243,8 tis.
110
18
641,8 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Minimalni polinom

Izvor: Hrvatska internetska enciklopedija
Inačica 50574 od 23. kolovoz 2021. u 05:14 koju je unio WikiSysop (razgovor | doprinosi) (Bot: Automatski unos stranica)
(razl) ←Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)

U različitim područjima matematike, minimalni polinom objekta a je u određenom smislu normirani polinom p najmanjeg mogućeg stupnja takav da je p(a) = 0. Posebno je značajan pojam minimalnog polinoma u linearnoj algebri i teoriji polja.

Linearna algebra

U linearnoj algebri, minimalni polinom kvadratne matrice A je monični polinom p najmanjeg mogućeg stupnja takav da je

p(A) = 0.

Svaka matrica A ima jednoznačno određen minimalni polinom; on se najčešće označuje sa μA. Minimalni polinom matrice dijeli svaki od polinoma koji je poništavaju, tako da se može odrediti i kao njihov najveći zajednički djelitelj, odnosno kao monični generator glavnog ideala

p ∈K[X] : p(A) = 0 } = (μA)

u prstenu polinoma K[X].

Slične matrice imaju jednake minimalne polinome. Minimalni polinom linearnog operatora L je minimalni polinom bilo koje od njegovih matrica (koje su sve međusobno slične). Istovremeno, to je i monični polinom p najmanjeg stupnja takav da je p(L) = 0.

Minimalni i karakteristični polinom matrice imaju jednake skupove nula, moguće različitih kratnosti. Drugi način da se iskaže ovo svojstvo je relacija

μA | φA | μAn.

Relacija μA | φA je posljedica Cayley-Hamiltonovog teorema, prema kojem je φA(A) = 0. Na osnovu ovog svojstva, minimalni polinom matrice se u praksi najčešće nalazi tako što se prvo izračuna i na čimbenike razloži njen karakteristični polinom, a zatim se minimalni polinom traži među njegovim djeliteljima sa istim skupom nula. Minimalni polinom kvadratne matrice reda n je stupnja najviše n.

Minimalni polinom, svojstvene vrijednosti i kanonski oblici matrice

Nule karakterističnog, pa dakle i minimalnog, polinoma matrice su njene svojstvene vrijednosti. Posebice, ako n × n matrica ima n različitih svojstvenih vrijednosti λ1, λ2, ..., λn, tada se njen minimalni i karakteristični polinom podudaraju i oba su jednaka

(X − λ1)⋅(X − λ2) … (X − λn).

Općenito, svaka matrica ima Jordanov normalni oblik, jednoznačno određen do na redoslijed blokova, po nekoliko njih za svaku svojstvenu vrijednost matrice, i koja joj je slična, te tako ima isti minimalni i karakteristični polinom. Ako matrica A ima svojstvene vrijednosti λ1, λ2, …, λk sa algebarskim kratnostima r1r2, …, rk (tako da je r1 + r2 + ... + rk = n), i ako su, za svako 1 ≤ i ≤ k, ν1(i) ≤ ν2(i) ≤ …, ≤ νsi(i) dimenzije Jordanovih blokova koji odgovaraju svojstvenoj vrijednosti λi (tako da je ν1(i) + ν2(i) + ... + νsi(i) = ri), tada je

, .

Posebno se minimalni i karakteristični polinom matrice podudaraju ako i samo ako svakoj njenoj svojstvenoj vrijednosti odgovara po točno jedan Jordanov blok, odnosno ako i samo ako su geometrijske kratnosti svih svojstvenih vrijednosti (za svojstvenu vrijednost λi to je si, broj odgovarajućih Jordanovih blokova) jednake 1.

Matrica je dijagonalizabilna nad nekim poljem F ako i samo ako je njen minimalni polinom umnožak različitih linearnih faktora nad F.

Matrice kod kojih se minimalni i karakteristični polinom podudaraju se pogodno karakteriziraju upravo kao matrice koje su slične nekoj cikličkoj matrici; linearni operatori koji odgovaraju takvim matricama se i sami nazivaju cikličkim operatorima. Općenito, ako su A1A2, ...., Al kanonski ciklički blokovi matrice A i φ1 | φ2 | ... | φl njihovi karakteristični (i istovremeno minimalni) polinomi, tzv. invarijantni djelitelji matrice A, tada je

φA = φ1φ2...φl,  μA = φl.

Poopćenja

Rabeći teorije Galoisa se ustanovljava da minimalni polinom matrice ne ovisi od polja nad kojim se ona promatra: ako je K potpolje nekog polja L i A matrica nad poljem K, tada je minimalni polinom matrice A kao matrice nad poljem K istovremeno i njen minimalni polinom kao matrice nad poljem L.

Minimalni polinom se definira i za matrice nad bilo kojim glavnoidealskim prstenom S kao generatorom ideala polinoma koji poništavaju matricu A u prstenu polinoma S[X], za koji se pak dokazuje da je onda i sam glavnoidealski; u tom slučaju on je definiran jednoznačno do na množenje jedinicama prstena S.

Minimalni polinom se također može definirati i za linearne operatore L na prostorima proizvoljne (moguće beskonačne) dimenzije kao monični polinom p najmanjeg stupnja takav da je p(L) = 0, ako takav polinom postoji. Na primjer, u funkcionalnoj analizi, svaki operator projekcije P u prostoru proizvoljne dimenzije je idempotentan, pa zadovoljava jednadžbu P2 − P = 0. Stoga je njegov minimalni polinom uvijek jedan od polinoma X (za operator projekcije na nul-potprostor), X −1 (za identični operator) ili X2 − X (za sve ostale operatore projekcije).