Toggle menu
243,8 tis.
110
18
641,7 tis.
Hrvatska internetska enciklopedija
Toggle preferences menu
Toggle personal menu
Niste prijavljeni
Your IP address will be publicly visible if you make any edits.

Königov poučak (teorija grafova): razlika između inačica

Izvor: Hrvatska internetska enciklopedija
Bot: Automatski unos stranica
 
m bnz
 
Redak 1: Redak 1:
<!--'''Königov poučak (teorija grafova)'''-->'''Königov poučak''', matematički [[poučak]]. Nosi ime po matematičkom [[teorija grafova|teoretičaru grafova]] [[Dénes Kőnig| Dénesu Kőnigu]]. Broj bridova u [[bipartitni graf|bipartitnom grafu]] u maksimalnom [[sparivanje grafova|sparivanju]] jednak je broju vrhova u minimalnom pokrivaču tog [[graf]]a. Sparivanjem se naizva skup bridova za koji ne postoje dva brida iz tog skupa koji imaju zajednički vrh. Pokrivač je skup vrhova za koji vrijedi da svaki brid im barem jedan kraj u nekom od tih vrhova.<ref name=Bašić>[https://web.math.pmf.unizg.hr/nastava/studnatj/poset.pdf PMF Zagreb] Matija Bašić: '' Uvod u algebarsku topologiju - Parcijalno uređeni skupovi - O lancima i antilancima'', 21. svibnja 2014., str. 1 (pristupljeno 19. prosinca 2019.)</ref>
Königov poučak''', matematički [[poučak]]. Nosi ime po matematičkom [[teorija grafova|teoretičaru grafova]] [[Dénes Kőnig| Dénesu Kőnigu]]. Broj bridova u [[bipartitni graf|bipartitnom grafu]] u maksimalnom [[sparivanje grafova|sparivanju]] jednak je broju vrhova u minimalnom pokrivaču tog [[graf]]a. Sparivanjem se naizva skup bridova za koji ne postoje dva brida iz tog skupa koji imaju zajednički vrh. Pokrivač je skup vrhova za koji vrijedi da svaki brid im barem jedan kraj u nekom od tih vrhova.<ref name=Bašić>[https://web.math.pmf.unizg.hr/nastava/studnatj/poset.pdf PMF Zagreb] Matija Bašić: '' Uvod u algebarsku topologiju - Parcijalno uređeni skupovi - O lancima i antilancima'', 21. svibnja 2014., str. 1 (pristupljeno 19. prosinca 2019.)</ref>


Ekvivalentni poučci su [[Birkhoff-von Neumannov teorem za dvostruko stohastičke matrice]], [[Ford-Fulksersonov teorem o protoku u mrežama]] i dr.<ref name=Bašić/>
Ekvivalentni poučci su [[Birkhoff-von Neumannov teorem za dvostruko stohastičke matrice]], [[Ford-Fulksersonov teorem o protoku u mrežama]] i dr.<ref name=Bašić/>

Posljednja izmjena od 23. ožujak 2022. u 04:13

Königov poučak, matematički poučak. Nosi ime po matematičkom teoretičaru grafova Dénesu Kőnigu. Broj bridova u bipartitnom grafu u maksimalnom sparivanju jednak je broju vrhova u minimalnom pokrivaču tog grafa. Sparivanjem se naizva skup bridova za koji ne postoje dva brida iz tog skupa koji imaju zajednički vrh. Pokrivač je skup vrhova za koji vrijedi da svaki brid im barem jedan kraj u nekom od tih vrhova.[1]

Ekvivalentni poučci su Birkhoff-von Neumannov teorem za dvostruko stohastičke matrice, Ford-Fulksersonov teorem o protoku u mrežama i dr.[1]

Izvori

  1. 1,0 1,1 PMF Zagreb Matija Bašić: Uvod u algebarsku topologiju - Parcijalno uređeni skupovi - O lancima i antilancima, 21. svibnja 2014., str. 1 (pristupljeno 19. prosinca 2019.)
Sadržaj