Bijekcija: razlika između inačica

Izvor: Hrvatska internetska enciklopedija
Prijeđi na navigaciju Prijeđi na pretraživanje
Bot: Automatski unos stranica
 
m bnz
 
Redak 1: Redak 1:
<!--'''Bijekcija'''-->[[Datoteka:Bijection.svg|mini|200px|Bijektivna funkcija.]]
[[Datoteka:Bijection.svg|mini|200px|Bijektivna funkcija.]]
U [[matematika|matematici]], za [[funkcija|funkciju]] iz [[skup]]a ''X'' u skup ''Y'' kažemo da je '''bijektivna''' ako za svaki ''y'' u ''Y'' postoji točno jedan ''x'' u ''X'' takav da ''f''(''x'') = ''y''.
U [[matematika|matematici]], za [[funkcija|funkciju]] iz [[skup]]a ''X'' u skup ''Y'' kažemo da je '''bijektivna''' ako za svaki ''y'' u ''Y'' postoji točno jedan ''x'' u ''X'' takav da ''f''(''x'') = ''y''.



Posljednja izmjena od 15. travanj 2022. u 07:05

Pogreška pri izradbi sličice:
Bijektivna funkcija.

U matematici, za funkciju iz skupa X u skup Y kažemo da je bijektivna ako za svaki y u Y postoji točno jedan x u X takav da f(x) = y.

Drugim riječima, f je bijektivna je 1-1 korespondencija između tih skupova, tj. i 1-1 (injekcija) i na (surjekcija)[1]

Na primjer, funkcija sljedbenika sljed, definirana na skupu cijelih brojeva u , tako da svakom cijelom broju x pridjeljuje cijeli broj sljed(x) = x + 1. Za drugi primjer, neka se promotri funkcija sumraz koja svakom paru (x,y) realnih brojeva pridjeljuje par sumraz(x,y) = (x + y, x − y).

Bijektivna se funkcija još zove bijekcija ili obostrano jednoznačno preslikavanje ili permutacija. Potonji se termin češće koristi kad je X = Y. Valja uočiti da 1-1 funkcija nekim autorima znači 1-1 korespondencija (tj. bijekcija), a drugim autorima injekcija. Skup svih bijekcija iz Y u Y se označava kao XY.

Bijektivne funkcije imaju fundamentalnu ulogu u mnogim područjima matematike, poput definicije izomorfizma (i srodnih koncepata poput homeomorfizma i difeomorfizma), permutacijske grupe, projektivne ravnine, i mnogim drugim.

Kompozicija i inverzija

Funkcija f je bijektivna ako i samo ako je njezina inverzna relacija f −1 funkcija. U tom je slučaju f −1 također i bijekcija.

Kompozicija g o f dvaju bijekcija f XY i g YZ je bijekcija. Inverz od g o f je (g o f)−1 = (f −1o (g−1).

Bijekcija komponirana od injekcije i surjekcije.

S druge strane, ako je kompozicija g o f dvaju funkcija bijektivna, možemo samo reći da je f injektivna i g surjektivna.

Relacija f iz X u Y je bijektivna funkcija ako i samo ako postoji druga relacija g iz Y u X takva da je g o f identiteta na X, i f o g je identiteta na Y. Slijedi da skupovi imaju isti kardinalni broj

Izvori

  1. (Bilješka: uporaba pojma "1-1" za opis injektivne funkcije može biti problematično, s obzirom da ga neki autori shvaćaju u smislu 1-1 korespondencija, tj. bijektivna funkcija

Vidjeti također


Nedovršeni članak Bijekcija koji govori o matematici treba dopuniti. Dopunite ga prema pravilima uređivanja Hrvatske internetske enciklopedije.